

fona

How to cope with externalities of wind power development? - Combining Ecological-Economic Modelling and Choice Experiments HELMHOLTZ
CENTRE FOR
ENVIRONMENTAL
RESEARCH - UFZ A German Case Study

Cornelia Ohl (Economics) and Marcus Eichhorn (Ecological Systems Analysis)

Overview

The Project

Partners and Goals

Background

Energy Goals of Climate Policy Externalities of Wind Power Development

The Modelling Framework

Study Region - West Saxony GIS-based Ecological-Economic Modelling Choice Experiments

Results and Discussion

Project partners and Duration

- Research Team
 - Helmholtz Centre for Environmental Research UFZ, Leipzig Economics (Lead), Ecological Systems Analysis, Environmental and Planning Law, Environmental Informatics
 - Berlin Institute of Technology (TU Berlin)

Dep. of Environmental and Land Economics

External Monitoring Group

BWE – German WindEnergy Association

CMI – Carbon Management International

NABU - Nature and Biodiversity Conservation Union

MASLATON – Attorneys-at-law

MILAN – Middle German office partnership on nature protection and landscape conservation

Regional Planning Authorities - West Saxony, Northern Hesse

Duration: 3 Years (Start: 1.2.2007)

Goals

- Assessing landscape related impacts of wind power development with the help of Choice Experiments and Ecological-Economic Modelling Framework.
- Evaluation of Planning Procedures on the Regional Level regarding the identification of sites for wind power development.
- Recommendations for Optimization and Re-Allocation of land use options for wind energy supply.
- Visualisation of alternative land use options in the landscape theatre (TESSIN) at UFZ.

CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

Background – Wind power in Germany

- Wind power is the most cost efficient renewable energy source today.
- ➤ 2007 wind power contributed to reduce CO2 in the electricity sector in Germany by roughly 45%.
- ➤ German wind power quota (2006: 5%) is expected to double until 2030 => **10%**.

CENTRE FOR ENVIRONMENTAL

Wind power is to contribute significantly to reduce CO₂ emissions and to accomplish German climate policy goals in future!

Page !

Research Questions

Is there sufficient land area available at the regional level in order to accomplish energy and climate policy goals in Germany?

Is the land area efficiently provided from a welfare economic point of view?

The Modelling Framework

Modelling Framework

Planning Region West Saxony

Search for potential wind turbine sites by exclusion of:

- 1. physically unsuitable areas (e.g. settlements, forests)
- **2. legally restricted areas** (e.g. bird protection)
- 3. buffer areas around settlements (settlement distance 800m)

Modelling Framework – energetic criteria

Wind energy output

• Raster based wind speed and wind frequency data

 $f(v) = \frac{k}{A} \left(\frac{v}{A}\right)^{k-1} * e^{-\left(\frac{v}{A}\right)^k}$ • Resolution 1000 x 1000m LOW

• Calculation of annual energy output for every individual wind turbine

Source: EUROWIND GmbH 2008

Modelling Framework – ecological criteria

Ecological impact of wind turbines on red kite

Assumptions:

- nearly all collisions occur during the breeding seasons
- 90% of all foraging flights during this time take place within a radius of 3km around aerie

Implication:

• The more and the closer aeries are located to a wind turbine the higher is the collision risk!

Modelling Framework – ecological criteria

Ecological impact of wind turbines on red kite

HELMHOLTZ
| CENTRE FOR
| ENVIRONMENTAL
| RESEARCH - UFZ

Empirical Investigation of Societal Preferences

Characteristics of wind energy defined as attributes of environmental changes:

Height of the turbines

Seize of a wind farm

Impacts on local wildlife (collision risk red kite)

Distance to settlement areas

Cost of allocation patterns (surcharge monthly power bill)

Survey presented to **German public** in summer 2008, including statements concerning **attitudes** toward wind power, etc. and **Choice Experiments**

Two representative studies (West Saxony: Northern Hesse)
nationwide online-survey

HELMHOLTZ
| CENTRE FOR
| ENVIRONMENTAL
| RESEARCH - UFZ

Attributes and Levels of the Choice Cards

Attributes	Levels		
Size of the wind farm	large (16 to 18 mills), medium (10 to 12 mills), small (4 to 6 mills)		
Height of the wind mill	110 meter, 150 meter, <u>200 meter</u>		
Local nature impact	small, medium, large		
Minimum distance to village/town	750 meter, 1.100 meter, 1.500 meter		
Surcharge to power bill per month	<u>€0</u> /€1/€2,5/€4/€6		

Note: underlined attribute levels describe programme A (constant least cost scenario)

Example of a Choice Card

Program A represents status quo for wind power production in 2020

	Programme A	Programme B	Programme C
Size of the wind farm	large farms	small farms	large farms
Height of the wind mill	200 Meter	110 Meter	110 Meter
Local nature impact	medium	low	medium
Minimum distance to village/town	750 Meter	1.100 Meter	1.500 Meter
Surcharge to power bill per month	€ 0	€ 6,-	€ 1,-

40 Choice sets: blocked into 8 subgroups with 5 choice sets; each block presented to 44 respondents at least. **Completed interviews** in West Saxony: **353**.

Results – Choice Experiments

Height of the turbines – not significant

Seize of a wind farm - not significant

Increasing the distance to settlement areas – positive WTP

Decreasing the impacts on local wildlife (collision risk red kite) – positive WTP

Welfare increases with increasing settlement distance and decreasing population loss.

HELMHOLTZ
| CENTRE FOR
| ENVIRONMENTAL
| RESEARCH - UFZ

Discussion

Can we identify sufficient land area for wind power development in West Saxony in order to accomplish national energy and climate policy goals?

Can we improve the current situation from a welfare economic point of view – even if the quota of regional wind energy supply is to double in future?

Thank you for attention!

Websites: http://www.ufz.de/index.php?de=14638

http://www.landschaftsoekonomie.tu-berlin.de/8359.html

